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Boundary-Layer Dispersion of Near-Wall Injected
Particles of Various Inertias

A. J. Dorgan,∗ E. Loth,† and T. L. Bocksell‡

University of Illinois at Urbana–Champaign, Urbana, Illinois 61801-2953
and

P. K. Yeung§

Georgia Institutue of Technology, Atlanta, Georgia 30332-0150

A direct numerical simulation approach was employed along with a Lagrangian particle tracking technique
to investigate dilute particle motion and dispersion in a horizontal turbulent boundary layer (Reτ = 270) with no
streamwise pressure gradient. Particle inertias based on inner Stokes numbers St+ (based on friction velocity)
ranging from 10−2 to 102 were investigated. The particles were injected near the wall at a height of four wall
units (with elastic wall collision specified at one wall unit), and the terminal velocity was kept small so that
particle–eddy interaction would be the primary dispersion. The results showed that particles having St+ < 1 behave
approximately as fluid tracers with respect to the large-scale turbulent structures. Particles with a significant inertia
effect (St+ > 1) tended to yield increased near-wall concentrations and wall collisions, qualitatively consistent with
previous channel flow experiments and simulations, but particle bounce velocities were significantly different
due to wall reflections and near-wall injection. Lagrangian statistics of the transverse fluid velocity deviated
substantially from the Eulerian statistics due to asymmetric diffusion. In addition, particle relative velocities far
exceeded the terminal velocity for moderate and large inertia particles, which was explained by a simple theoretical
model.

Nomenclature
C = mean Eulerian particle concentration
CD = drag coefficient
d = diameter
FD = drag force
Fg = gravitational force
f = frequency
g = magnitude of gravitational acceleration
k = turbulent kinetic energy
Lx , L y , Lz = dimensions of computational domain

in Cartesian directions
m = mass
Re = Reynolds number
St = Stokes number
t = time
u, v, w = streamwise, transverse/vertical, and spanwise

velocity components
V, V = velocity vector, magnitude
x, y, z = streamwise, transverse/vertical, and spanwise

coordinates
γ = drift parameter
δ = reference boundary-layer thickness (thickness

at injection location)
ε = turbulent dissipation per unit mass
ν = kinematic viscosity
ρ = density
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τ = timescale
τdom = average time a particle requires

to traverse particle tracking domain
τint = total integration time

Subscripts

bounce = particle–wall collision
f = fluid quantity
p = particle quantity
rel = particle quantity relative to the fluid
term = based on terminal velocity
δ = based on outer scales
� = based on Lagrangian turbulence scales
τ = based on wall-shear stress
0 = injection location
∞ = freestream

Superscripts

− = Eulerian-averaged quantity
′ = fluctuation about the Eulerian average
+ = based on inner scales
∗ = nondimensional length based on δ

I. Introduction

P ARTICLE dispersion in wall-bounded flows is important in a
number of applications ranging from transport of multiphase

mixtures, to friction-drag reduction applications, to environmental
studies concerned with the diffusion of contaminants. In aerospace
applications, two particular cases of interest are particle ablation,
which can occur on high-speed aerodynamic surfaces, and particle
erosion, which can occur in solid-propellant rocket engines. In both
cases, the gravitational effects are minimal, and turbulence is the
primary reason for the particles to spread away from the wall where
they were injected. Consistent with the small particle loading for
such applications, we consider herein the particle concentration to
be dilute, such that particle–particle interactions and the effect of
the particles on the surrounding fluid dynamics are negligible. The
reasonableness of this assumption will be discussed in terms of the
resulting concentration profiles in Sec. III.B.
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In general, for a turbulent boundary layer characterized by a fluid
kinematic viscosity ν f , freestream velocity U∞, and based on a ref-
erence location, one can define a friction velocity ut and a boundary-
layer thickness δ. When it is assumed that the particle density is much
greater than that of the surrounding fluid, the particle response time
τp can be related to the terminal velocity Vterm and the magnitude
of the gravitational acceleration g, that is, τp = Vterm/g. From these
values, one can define some key nondimensional parameters that
govern turbulent diffusion: the drift parameter γ , outer Stokes num-
ber Stδ , inner Stokes number St+, and wall-shear Reynolds number
Reτ , as follows:

γ = Vterm/uτ , Stδ = τp/τδ = τp/(δ/uτ )

St+ = τp

/
τ+

f = τp

/(
ν f

/
u2

τ

)
, Reτ = uτ δ/ν f (1)

where the subscripts p and f distinguish particle from fluid char-
acteristics, respectively. In the case of homogeneous isotropic sta-
tionary turbulence (HIST), particle diffusion is a result of both the
crossing trajectory effect (controlled by the drift parameter) and
the inertia effect (controlled by the Stokes number). For long-time
diffusion (t � τp and t � τ f , a relevant fluid timescale) in HIST
flows, previous experimental, numerical, and analytical studies have
shown that γ is the main parameter (as opposed to Stokes num-
ber) in terms of controlling the magnitude of long-time particle
diffusion.1−3

Particle dispersion in inhomogeneous turbulent flows is signif-
icantly more complicated, and, as a result, several aspects of the
underlying physics are not well understood. For example, Young
and Leeming4 reviewed particle deposition experiments and noted
that the diffusion–impaction regime exhibits a dramatic increase
in particle deposition caused by the phenomenon of “turbophore-
sis” (a convective drift of particles down gradients of mean-square
fluctuating velocity). Based on average Eulerian fluid properties
and a particle equation of motion, they developed a model for
this effect that was shown to agree well with experimentation and
that offers improvement over the free-flight theory of Friedlander
and Johnstone.5 McLaughlin6 and Brooke et al.7 investigated rigid
spherical particles in a vertical channel by using direct numerical
simulation (DNS) and found that particles tended to concentrate in
the viscous sublayer of the near-wall flow through wallward mo-
tions of the turbulence (termed sweep events) in the buffer layer,
that is, trapping by coherent streamwise structures. Pedinotti et al.8

and van Haarlem et al.9 also used DNS and observed preferen-
tial concentration in the low-speed streaks near the channel wall
where the effect was most noticeable for intermediate St+ (on the
order of 3–5). Narayanan et al.10 studied particle dispersion and
deposition in the near-wall region of a modified channel flow for
St+ = 5 particles and found that a particle’s inertia quickly carries
it through the sublayer and onto the wall. Marchioli and Soldati11

performed particle simulations using DNS and investigated a wide
range of Stokes numbers (St+ of 4–116) and noted that this parame-
ter primarily controlled the turbophoresis phenomenon. Some addi-
tional relevant simulations are found in Refs. 12–17 as discussed by
Dorgan.18

However, none of these DNS studies considered a canonical, spa-
tially growing boundary layer, as is the case for the present research
and the experiments of Kaftori et al.19 A boundary-layer flow in-
cludes unique features such as a dramatic dropoff in turbulent ki-
netic energy and dissipation toward the freestream edge, a mean
wall-normal velocity induced by boundary-layer growth, and a con-
tinuously developing mean profile. Study of particle dispersion in a
turbulent boundary-layer flow is important to several external flow-
fields, for example, particles ablating from an aerodynamic surface
and particles lofted from the ground in an atmospheric boundary
layer. The present research is also unique in that it considers a sig-
nificantly higher Reynolds number (based on channel half-height,
pipe radius, or boundary-layer thickness) than the previous multi-
phase DNS studies just noted. The number of computational nodes
was also commensurately large, for example, five times that studied
by Narayanan et al.10

The particle conditions of the present study are also unique. First,
the present research considers a wide range of St+, from 0.027 to
270. Second, it also considers a fixed and finite drift parameter of
0.01. A finite value of this parameter was used to determine the
transition from gravity dominated to inertia dominated conditions
for constant γ , but allows exclusive focus on the inertia influence.
In particular, a fixed drift parameter will tend to hold the crossing
trajectory effect approximately constant and allow focus on inertial
effects only. This condition is interesting from a flow physics point of
view, but is difficult to investigate experimentally because it requires
changing the flow condition, that is, friction velocity, and particle
diameter simultaneously. Herein, the gravitational force and parti-
cle size could be varied instead to achieve this condition. Third, the
present study also considers the injection of particles near the wall
(and not distributed throughout the flow as in most of the previous
studies) because this injection is consistent with external boundary
flows. Fourth, the streamwise recycling of particles often used in
channel flows is not employed herein because the flow and, thus,
particle concentration, is spatially developing, that is, does not be-
come statistically stationary. Finally, the present research also con-
siders the case of particle reflection, that is, the particles’ bounce,
when contacting the wall, which is physically consistent for many
of the external flows of interest described earlier, but is in contrast
to the case in many of the previous studies where particles would
stick to the wall.

For these unique flow and particle conditions, we examine par-
ticle diffusion, dispersion, reflection, and velocity statistics. This
study is for a well-characterized inhomogeneous, anisotropic flow,
so that Reynolds-averaged Navier–Stokes-based numerical parti-
cle diffusion techniques can be directly evaluated without issues of
experimental uncertainties or turbulence model empiricism. (Refer-
ences 18 and 20 contain additional statistics of the flow solution.) In
summary, the present research is aimed at isolating and understand-
ing the exclusive effects of inertia on near-wall particle dispersion
phenomena for a turbulent boundary layer.

II. Methodology
A. Turbulent Boundary Layer

The continuous-phase solution for the turbulent boundary layer
was obtained from a DNS of the incompressible Navier–Stokes
equations. The continuous-phase solution is independent of the par-
ticle trajectories because the particle concentration is assumed to be
dilute and does not effect the carrier phase, that is, the flow only
allows one-way coupling of the fluid on the particle motion. The
DNS code was developed by Spalart and Watmuff21 to simulate a
three-dimensional, spatially developing boundary layer with zero
streamwise pressure gradient. The method is spectrally accurate in
the three spatial directions and second-order accurate in time. The
solution domain is semi-infinite over a flat, smooth surface with
0 ≤ x ≤ Lx , 0 ≤ z ≤ Lz , and 0 ≤ y ≤ ∞, where x , z, and y repre-
sent the streamwise, spanwise, and transverse directions; Lx is the
streamwise domain length; and Lz is the length of one period of
the periodic spanwise domain. The domain is discretized by 256
nodes in the stream direction, 96 in the span direction, and 55 in
the transverse direction, for a total of 1,351,680 nodes in the three-
dimensional mesh. To achieve a spatially growing boundary layer,
a fringe velocity is included in the momentum transport terms. This
decrement effectively subtracts the momentum accumulation due
to the spatial growth in the boundary layer. This fringe velocity
sources and sinks repose the spatial developing boundary problem
as a quasi-periodic problem in the x direction, so that the outflow
conditions (suitably modified) are then used as inflow conditions.
The useful region of the streamwise domain is defined as the por-
tion of the domain not significantly affected by the fringe boundary
conditions and ranges from x = 0.2Lx to x = 0.8Lx . Further details
are given by Dorgan.18

Eulerian time-averaged/spanwise-averaged statistics of the fluid
properties at x = Lx/3 are shown in Fig. 1 for transverse profiles of
the mean velocity (u+ = ū/uτ , where u is the streamwise velocity
and uτ is the reference friction velocity); the turbulent kinetic energy
(k = 1

2 (u′
f u′

f + v′
f v

′
f + w′

f w
′
f ) normalized by uτ ); the turbulent
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a) d)

b) e)

c) f)

Fig. 1 DNS statistics at Λx/3 for a) mean velocity profile, b) turbulent kinetic energy profile, c) turbulent dissipation per unit mass profile and velocity
autocorrelations for the d) streamwise, e) transverse, and f) spanwise fluctuations.

dissipation per unit mass ε, normalized by δ, the reference boundary-
layer thickness, and u3

τ ; and the velocity auto-correlations (u′
f u′

f ,
v′

f v
′
f , w′

f w
′
f ) normalized by u2

τ . Note that u, v, and w represent the
streamwise, vertical, and spanwise velocity components, respec-
tively, and that the same streamwise location was chosen for the
reference δ and uτ values. The Eulerian-averaged properties, de-
noted as q̄ for some arbitrary property q , represent averaging over
the spanwise domain and over an integration time period τint of about
10 τδ , and, thus, are a function of (x , y), that is, the Eulerian mean
and its perturbation are given by

q̄(x, y) = 1

τint

∫ τint

0

[
1

�z

∫ �z

0

q(x, y, z, t) dz

]
dt

q ′(x, y, z, t) = q(x, y, z, t) − q̄(x, y) (2)

Figure 1a, the profile of the mean streamwise velocity u f at
x = �x/3, normalized by uτ , shows a viscous sublayer below
y+ ∼ 10 and a transition to a logarithmic curve by y+ ∼ 30. The
common law of the wall expressions are included for the purpose of
comparing the data to very high-Reynolds-number boundary lay-
ers. In Fig. 1b, we note that below y+ = 1 the turbulent kinetic
energy is nearly zero and approaches a maximum of about 3.6 at
around y+ = 15. Toward the boundary-layer edge, the energy re-

turns to zero, as expected. Figure 1c shows the expected trend for
the turbulent dissipation per unit mass for the turbulent boundary
layer, albeit with some numerical noise outside the mean boundary-
layer edge where the kinetic energy is quite small. Figures 1d–1f
give the Eulerian-averaged velocity autocorrelations and show that
u′

f u′
f is the largest of the three autocorrelations, peaking at nearly

6uτ very close to the wall at a y+ of around 10. The transverse ve-
locity fluctuations represent the smallest autocorrelation and peaks
furthest away from the wall, such that the peak magnitude of v′

f v
′
f

is only 0.9uτ at y+ of about 70. Note that the turbulence inten-
sity (rms) in the three directions is defined from the autocorrela-
tions, for example, v′

f,rms(x, y) = [v′
f v

′
f (x, y)]1/2. These kinetic en-

ergy and velocity fluctuation results are similar in magnitude to the
experimental results of Klebanov reported by Hinze (see Ref. 22)
at Reτ = 2800.

To better characterize the turbulence timescale of the fluid, an inte-
gral Lagrangian timescale τ� can be defined based on the Lagrangian
decorrelation of the streamwise velocity fluctuations. This is based
on an ensemble average from the release of many fluid tracers
(particles that have no inertia and, thus, move at the speed of the
fluid velocity) injected over the full spanwise range (z0 = [0, Lz])
and released at various instances throughout a long time period
(t0 = [0, τint − τdom]), where τdom is the average time for a fluid tracer
to traverse the interrogation domain (15 boundary-layer thicknesses)
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and where the subscript zero denotes the injection conditions. These
fluid tracers were released at the reference plane x0 = Lx/3 and
at various y0 stations (from near to the wall to well above the
boundary layer). The velocity correlations were then tracked over
fluid Lagrangian paths and integrated to obtain the decorrelation
timescale for each fluid tracer. This result was then averaged over
all fluid tracers released at a transverse location. The Lagrangian
integral timescale for the streamwise velocity fluctuations is,
therefore,

τu′
f
,�(y0) =

(
1

F

) F∑

i = 1

×
∫ t1

t0
u′

f (x0, y0, z0, t0)u′
f (x0 + �x f , y0 + �y f , z0 + �z f , t) dt

[1/(t1 − t0)]
∫ t1

t0
u′

f (x0, y0, z0, t0)u′
f (x0, y0, z0, t0) dt

(3)

where

�x f (t) =
∫ t

t0

u f (x, y, z, τ ) dτ, �y f (t) =
∫ t

t0

v f (x, y, z, τ ) dτ

�z f (t) =
∫ t

t0

w f (x, y, z, τ ) dτ

and where F is the total number of fluid tracers released at a given
y0 station. Similarly, τv′

f
,� and τw′

f
,� were obtained, and the three

timescales were linearly averaged together to give τ� as a function
of y0 (Ref. 20). This timescale is used as an approximation of the
turbulence local lifetime, though weak changes can be expected as
a function of streamwise location.

B. Particle Equation of Motion and Statistics
The Lagrangian equation of motion for a rigid particle used herein

is given by

m p
dVp

dt
= FD + FG (4)

where m p is the particle mass, FD is the steady-state drag force,
FG is the buoyancy force, and Vp is the particle velocity vector.
The particle density was assumed to be much greater than the fluid
density, such that virtual mass and secondary forces due to lift, fluid
stress gradient, and particle history can be assumed negligible. Note
that the neglect of lift may be the most important approximation
because the particles will often be located in the high-shear near-
wall region. The particle hydrodynamic forces for this study are
summarized as

FD = − 1
2 ρ f |Vrel|Vrelπ

(
d2

p

/
4
)
CD, FGi = m pgi (5)

where Vrel(= Vp − V f ) is the magnitude of the relative velocity
vector, which is equal to Vterm in quiescent conditions. A Stoke-
sian drag law (CD = 24/Rep , where Rep = dp|Vrel|/ν f ) has been
employed because it allows understanding of the fluid physics
without introducing the nonlinearities and empiricism associated
with high Reynolds number expressions. From this, the particle re-
sponse time can be written in terms of the particle mass as τp =
m p/18dρ f ν f .

The particle trajectories are computed by numerically integrating
the particle equation of motion using the exponential Lagrangian
method as described by Barton23 and as modified by Bocksell20 to
include gravitational effects:

Vp(t + �t) = Vp(t) exp(−�t/τp)

+ [1 − exp(−�t/τp)][(1/τp)V f (t) + g]τp (6)

This scheme was implemented in an Adams–Bashforth, predictor–
corrector fashion for second-order accuracy in time. The number of

particles used in each simulation was varied over a significant range
to ensure statistical convergence for all results presented herein. In
the computation of the statistical average along the particle trajec-
tory, interpolation between the computational nodes to the parti-
cle location is required. This was accomplished by using the sur-
rounding eight fluid nodes as corner points for trilinear interpolation
of the fluid velocity. Because of the fine grid resolution, this was
found to be sufficiently accurate for all of the statistical results pre-
sented herein, such that a spectrally accurate interpolation was not
needed.

C. Test Conditions
The baseline test condition for the particle/turbulent boundary-

layer interaction was chosen as Stδ = 10−2 and γ = 10−2. This rep-
resents a relatively rapid, but finite, response of the particle to the
large-scale turbulent structures, for example, it corresponds, hy-
pothetically, to a 24-µm-diam solid sphere with a density of
1000 kg/m3 in a flow of air with δ = 22 cm and uτ = 1.47 m/s
(Reynolds number of approximately 2.2 × 104). In this case, the
particle radius is equal to one wall unit, that is, contact with
the wall occurs when the transverse location of the particle
centroid y+

p equals one (a boundary condition to be employed
herein).

To vary the particle inertia, the general test conditions used a range
of five outer Stokes numbers Stδ equally spaced on a logarithmic
scale from 10−4 to 100, all for a constant γ of 10−2. For this small
γ , inertia and turbulent diffusion effects will dominate the particle
dispersion (as opposed to gravity) to be in line with the objectives
of this study. One of the statistics to be gathered is the Lagrangian
average along the particle path, that is,

〈q〉 =
[

1

N

] N∑

i = 1

1

(t1 − t0)

∫ t1

t0

q(x0 + �x p, y0 + �yp, z0 + �z p, t) dt

(7)
where

�x p(t) =
∫ t

t0

u p(x, y, z, τ ) dτ, �yp(t) =
∫ t

t0

vp(x, y, z, τ ) dτ

�z p(t) =
∫ t

t0

wp(x, y, z, τ ) dτ

where N is the total number of particles injected (all injected
at y+

0 = 4 and x0 = Lx/3). From this definition, the average local
Lagrangian particle Stokes number can be obtained as

〈St�〉 = τp/〈τ�(yp)〉 (8)

for a given class of particles, and is bounded (as expected) by St+

and Stδ as shown in Table 1. Recall that Stδ and St+ are based on
the flow parameters at the injection location only and, thus, are only
qualitative estimates for the particle characteristics throughout the
domain, whereas 〈St�〉 is based on an average integrated along par-
ticle paths throughout the domain. Note that the domain time (τdom,
the average time required for a particle to traverse the tracking do-
main) is relatively large compared to the particle response times and
integral timescales. Note also that the conditions are not universal
in that changes in the boundary-layer Reynolds number will alter

Table 1 Particle test conditions with various Stokes numbers
and integration times

Stδ 〈St�〉 St+ τdom/τ� τdom/τp

1.0E−04 7.8E−04 2.7E−02 12.6 1.6E+04
1.0E−03 7.8E−03 2.7E−01 12.7 1.6E+03
1.0E−02 8.3E−02 2.7E+00 14.6 1.8E+02
1.0E−01 1.2E+00 2.7E+01 30.7 2.6E+01
1.0E+00 1.4E+01 2.7E+02 45.6 3.3E+00
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Fig. 2 Schematic of particle injection location (x0, y0, z0) and particle tracking domain; gravity and terminal velocity of particles directed in y
direction, away from wall.

the ratio between the inner and outer timescales; however, it is ex-
pected that the behavior and statistics of particles in the near-wall
region will tend to scale with St+, whereas particle results in the
outer region will tend to scale with Stδ . In addition, δ and uτ will
change within the test area because the boundary layer is spatially
developing and will result in small changes in these Stokes num-
bers if defined at other streamwise locations. (Note that this problem
does not occur with constant channel flow simulations.) However,
St� does not suffer from this problem because it was obtained as an
average throughout this domain.

The particles were injected at uniform spanwise locations at
y+

0 = 4 and x0 = Lx/3 and tracked through a distance of 15
boundary-layer thicknesses downstream (Fig. 2). This streamwise
injection location corresponds to Reδ = 4500 (based on U∞ and δ)
and Reτ ≈ 270 (based on uτ and δ). There were 50 particles in-
jected every other time step, that is, at every 0.57τ+

f , for a period
of 4000 time steps (4.38 τδ) such that a total of 100,000 particles
were injected (a large enough group for converged statistical re-
sults). A typical simulation lasted around 12,000 time steps and
took approximately 21 wall clock hours of compute time on a sin-
gle processor. The streamwise portion of the particle tracking region
was nondimensionalized with respect to the reference boundary-
layer thickness as 0 ≤ x∗ ≤ 15, where x∗ = (x − Lx/3)/δ, and the
reference boundary-layer thickness δ is the thickness at Lx/3. Sim-
ilarly, the spanwise domain was nondimensionalized by δ to obtain
0 ≤ z∗ ≤ 5.56, where z∗ = Lz/δ.

The particles were injected with the sum of the mean fluid veloc-
ity and the terminal velocity, that is, with u p = u f (approximately
4uτ ), vp = v f + Vterm, and wp = w f = 0. This choice of injection
(as opposed to injecting at the instantaneous fluid velocity plus the
terminal velocity) ensured that the particles with the largest Stokes
numbers would not possess unrealistically large initial velocity vari-
ations that are generally inconsistent with their long response times.
Note that the choice of the initial velocity for the small particles is
not as important because the initial conditions will be more quickly
forgotten due to faster response times.

To prevent wall collisions from acting as the dominant dispersion
phenomena for the larger particles, the particle’s terminal velocity is
directed away from the wall, consistent with ablation from a lower
aerodynamic surface, and a perfectly elastic wall collision at y+

of one was imposed as a reflection condition (consistent with the
hypothetical physical particle dimensions).

a)

b)

c)

d)

Fig. 3 Instantaneous fluid solution at z∗ = 2.78 with particle loca-
tions: a) Stδ = 10−4 (St+ = 0.027), b) Stδ = 10−2 (St+ = 2.7), c) Stδ = 10−1

(St+ = 27), and d) Stδ = 100 (St+ = 270).

III. Results
A. Particle Dispersion Structures

To investigate preferential concentration as observed in previous
studies with channel flow, the particle positions were mapped onto
the streamwise velocity field. Figures 3 and 4 show the instanta-
neous fluid solution and particle locations for the Stδ = 10−4, 10−2,
10−1, and 100 cases for z∗ = 2.78 (vertical plane) and y+ = 9.66 (a
horizontal plane). In Figs. 3a and 3b (both with St+ < 1 and Stδ � 1),
the particles injected at x∗ = 0 can be seen to diffuse away from the
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a)

b)

c)

d)

Fig. 4 Instantaneous fluid solution at y+ = 9.66 (where uf = 0.42) with
particle locations a) Stδ = 10−4 (St+ = 0.027), b) Stδ = 10−2 (St+ = 2.7),
c) Stδ = 10−1 (St+ = 27), and d) Stδ = 100 (St+ = 270).

wall, primarily via low-speed fluid ejections, and are nearly diffused
as a fluid tracer. These particle ejections tend to have vertical scales
and streamwise separations of about one δ. As inertia increases (to
St+ = 2.7 and 27 in Figs. 3c and 3d) the particle diffusion away from
the wall is substantially delayed (spatially), and the particles are
more likely to be located along the wall, though the streamwise sepa-
rations are still about one δ in scale. These near-wall injection results
(whereby diffusion is primarily away from the wall) are much dif-
ferent than previous channel flow results with uniformly distributed
particle injection (where turbulent diffusion generally leads to a net
movement toward the wall). However, one study that considered
near-wall injection conditions was that of Soltani and Ahmadi,24

who observed qualitatively similar behavior as found herein.
To see the spanwise structure, particles are considered along a

near-wall horizontal plane in Fig. 4. The Eulerian mean velocity
u f at this y location is 0.42 and is depicted with gray contours.
The particles (shown as black dots) are located above and below
the fluid plane in a region extending from 7.44 < y+ < 12.2. This
transverse range was chosen to be large enough to include several
particle positions, yet sufficiently small to ensure that the selected
fluid plane is a good representation of the fluid solution over the
transverse range and, thus, at the actual particle location. Toward
the left of each of Figs. 4 (x∗ < 3 for Stδ = 10−4 and x∗ < 9 for
Stδ = 100), there are very compact streaks of particles (indicated by
black arrows in Figs. 4a and 4d). These particles are moving up from
the injection location at y+ = 4 into the collection bin, whose floor
is set to 7.44 inner units. The lowest inertia (St+ = 0.027) particles
(which behave nearly as fluid tracers) initially move upward with
the fluid and are generally located in low-speed streaks because
u′

f v
′
f is negative for the boundary layer. After moving sufficiently

downstream (x∗ > 3), the particle trajectories lose memory of the
initial ejections, and the correlation of particle location with low-
speed streaks is lost (as expected).

At an Stδ = 10−2, the particle streaks are reduced in intensity
downstream as the local concentration is reduced. However, there is

a continued correlation of particles in low-speed streaks (white), or,
equivalently, an absence of particles in (black) high-speed streaks.
At this flow condition (St+ = 2.7), the correlation (preferential con-
centration) appears to be stronger than at any of the other St+ values.
This is consistent with the channel flow results of Pedinotti et al.8

and Marchioli and Soldati.11 This correlation is also noticeable at
a Stokes number of Stδ = 10−1 (which corresponds to St� = 1.2
and St+ = 27), however, it is more focused in the longer low-speed
streaks, whereas some particles can be seen in the small-scale high-
speed regions. In the highest Stokes number case (Stδ = 100), the
particles move up in the same streaky fashion, but do not neces-
sarily correspond to low-speed streaks at this entry point because
their inertia is sufficiently large to allow them to be unresponsive to
the small-scale structures. Thus, their initial streaks are primarily a
consequence of the initial conditions imposed on the particle. Far-
ther downstream, as the effect of the initial conditions subsides, the
particles tend to preferentially concentrate themselves in only the
longest (long timescale) low-speed streaks, located in the bottom
right half of Fig. 4, while remaining uncorrelated with the small-
scale structures; that is, they are just as likely to be observed in small
high-speed regions as they are in small low-speed regions. These
results are qualitatively similar to those by Marchioli and Soldati11

and van Haarlem et al.,9 but those results show streaks that are much
more compact in the spanwise direction and much longer in the
streamwise direction, which may be due the present wall reflection
condition that effectively produces specular diffusion near the wall.

B. Particle Diffusion Behavior
Transverse particle distributions are shown in Fig. 5 for various

particle sizes, where C represents the ensemble average of the mean
Eulerian concentration of particles (obtained through net flux statis-
tics) and C0 is the bulk concentration fluxing through the reference
boundary-layer thickness. Figures 5a and 5b show the particle trans-
verse distribution profile at 8 and 15 boundary-layer thicknesses
downstream of the injection location; the y+ data points are at the
center of each of the 26 transverse bins. In Fig. 5a (x∗ = 8), the
smallest two particles (Stδ = 10−4 and 10−3) yield nearly the same
results. This is consistent with their condition of St+ < 1 so that
they effectively act as tracers and are primarily governed by fluid
turbulent mixing. As a result, they quickly diffuse away from the
wall, such that the overall particle distribution extends significantly
beyond y+ of 100, that is, beyond y/δ of 0.4, where one expects that
particle diffusion is dominated by large-scale structures and Stδ .

The larger Stδ = 10−2 particles begin to show the influence of in-
ertia. Whereas the outer portion of the profile (y+ > 30) is nearly
identical to the profiles for the smaller particles, there is a higher
concentration of particles in the near-wall region (y+ < 10). These
two results are expected because the outer region should be governed
by Stδ (which is still much less than one, such that these particles
should act similar to a passive scalar), whereas the near-wall region
should be governed by St+ (which is of order one for this particle
condition and, therefore, should demonstrate inertial tendencies in
the near-wall region). Note that the increased near-wall concentra-
tion is not expected to be a result of reduced mean diffusion due
to particle size increases in homogeneous turbulence because such
diffusion rate reductions are due to increases in γ , from the crossing
trajectory effect, which is fixed in the current simulations. Therefore,
the concentration increase is due to inhomogeneous turbulence, as
discussed by Young and Leeming,4 whereby particles move away
from high-turbulence regions and, thus, avoid moving toward the
turbulence peak, that is, avoid moving away from the wall.

The remaining two cases (Stδ = 10−1 and 100) also have peak
concentrations below y+ of 10, but with much higher values. This is
consistent with the model of Young and Leeming,4 for which such
wall Stokes numbers (St+ = 27 and 270) correspond to the highest
turbophoretic velocities toward the wall. Thus, nonhomogeneous
turbulence aspects play a strong role in the reduced diffusion of
very large St+ particles in spatially developing boundary layers with
reflective wall conditions. This result is very similar to the flux dis-
tribution observed for St+ ranging from 0.6 to 14 in the boundary-
layer experiments of Kaftori et al.,19 shown in their Fig. 12, for
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a)

b)

c)

Fig. 5 Particle concentration: a) transverse profiles for x∗ = 8, b)
transverse profiles for x∗ = 15, and c) maximum particle concentration
as a function of outer Stokes number.

which elastic wall rebound may be expected. Note that the present
reflection boundary condition at y+ = 1 results in a different concen-
tration profile than previous, nonreflecting channel flow results, for
example, those of Narayanan et al.10 and van Haarlem et al.,9 which
yield a continued particle concentration increase toward y+ = 0.

Figure 5b shows the concentration profile for the last collection
plane located at 15 boundary-layer thicknesses downstream of the
injection location. In general, the same trends discussed earlier can
be seen, but with differences due to the convection and diffusion
farther downstream. In particular, there is a decay of the peak con-
centration or, equivalently, a broadening of the profile for all cases.
Note that the net shift in the peak concentration away from the wall
due to the imposed terminal velocity on the particle trajectories does
not play a major role in the concentration profiles because it is small.
(It corresponds to a �y+ of about one, which is small compared to
the bin resolution.) As expected, the decay of the peak concentration
for Stδ = 1 is somewhat slower than for Stδ = 10−1, and is attributed
to the increased (10 times larger) inertia.

Figure 5c quantifies the change in the peak concentration for
the range of Stokes numbers investigated. The peak concentration
increases with Stokes number for high inertias (due to the lack of
long-time behavior) and decays nearly linearly with x/δ; that is, a

a)

b)

c)

Fig. 6 Mean-square deviation from the injection location in a) span-
wise direction for an approximate fluid tracer injected at y+ = 100,
b) spanwise direction for DNS test matrix, and c) transverse direction
for DNS test matrix: �, Stδ = 10−4; , Stδ = 10−3; ——, Stδ = 10−2;
- - - -, Stδ = 10−1; – – –, Stδ = 100; and �, tVterm.

twofold increase in x corresponds, roughly, to a twofold decrease in
Cmax. This will be found to be consistent with the results in Fig. 6,
where the diffusion rates will be quantified.

Near the injection location (x/δ = 0.5), the particle concentra-
tions for all cases were on the order of 25–35 times the bulk concen-
tration C0; that is, about one-half of the particles were concentrated
at a y+ of 10 or less. Whereas these high concentration levels gener-
ally decreased with distance from the injection location,20 the high
Stokes number particles give concentrations levels of 20–30 times
the bulk concentration even far downstream of the initial injection.
Thus, the dilute flow assumption should be considered (at least) in
terms of the local mean concentrations based on C , which can be
very high near the wall. One way to estimate whether a flow is dilute
is to estimate the momentum coupling parameter, which is the ratio
of momentum flux of the continuous-phase flow to the net force
applied to the fluid by the particles. To quantify the momentum
coupling parameter for the peak concentrations described earlier
(assuming a mean continuous-fluid velocity of 5uτ and terminal
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velocity of 0.01 uτ ), the coupling parameter is approximately 10−2,
indicating that the effect of the particles on the mean momentum is
small. However, a coupling parameter defined instead on the mean
turbulent kinetic energy through this flux surface will be on the order
of 10−1, indicating that the turbulence may be significantly affected,
especially in local regions, because preferential concentration can
cause increased concentrations in streaks as, for example, in Fig. 4b.
Thus, the present results should only be considered in terms of a
low-concentration limit. Note that simulations with fewer total par-
ticles were also completed and gave similar results in terms of mean
concentration profiles, etc.

Another issue that should be considered when interpreting the
present results is that neglecting lift (as is assumed herein) may not
always be appropriate. If one assumes a nonrotating particle in the
laminar sublayer (where the mean shear is the highest and on the
order of uτ /d), the ratio of Saffman lift to Stokes drag is on the order
of 10−1. Particle rotation can significantly reduce this ratio (by an
order of magnitude), such that the mean lift is not expected to be
substantial. However, instantaneous lift can be important (especially
with respect to turbulent diffusion) because fluctuations in vorticity
are significantly higher than the mean vorticity. Thus, the present
results are only important when drag dominates the particle surface
forces.

Before examination of the particle diffusion rates for near-
wall injection, a preliminary test was completed with a group
of Stδ = γ = 10−4 particles (essentially fluid tracers), released at
y+ = 100 (where the boundary layer should be approximately ho-
mogeneous and isotropic). The spanwise diffusion statistics of the
particle cloud are shown in Fig. 6a, where the temporal variation
is normalized by 〈τ�〉, the mean integral fluid timescale along the
particle path. This timescale was chosen as the normalizing param-
eter because it allows a clear identification of short-time behavior
(t � 〈τ�〉) and long-time behavior (t � 〈τ�〉 and t � τp , where the
latter condition is always satisfied for these nearly tracer particles).
The resulting diffusion curve is broken into four pieces, and the slope
of each piece is estimated. For normalized times less than 0.1, the
slope of the diffusion curve is approximately two, consistent with
the short-time particle diffusion rates in HIST.16 At longer times, a
decreasing slope is seen where it is expected that the slope would
approach unity for t/〈τ�〉 � 30, which is consistent with the linear
long-time particle diffusion in HIST.22 Thus, particle diffusion away
from the wall tends to obey a conventional transition from short-time
to long-time diffusion associated with homogeneous isotropic sta-
tionary turbulence.

Figures 6b and 6c show the mean-square particle deviation from
the injection location in the spanwise and vertical directions, respec-
tively. The timescale (the time elapsed since a particle’s injection) is
again normalized by 〈τ�〉. The maximum time used in these statis-
tics was based on a period in which all particles could be tracked
within the useful region of the flow domain. (This avoids bias asso-
ciated with slower moving particles that would tend to stay in the
computational domain for longer times.)

First, the mean-square spanwise deviation from the near-wall in-
jection location is considered (Fig. 6b). Because there is no com-
ponent of terminal velocity or turbulence gradient in the spanwise
direction (and, thus, no mean spanwise drift), this statistic can be
directly related to the turbulent particle diffusion. The two smallest
particle conditions (Stδ = 10−4 and 10−3) give the highest amount
of diffusion and nearly identical results. However, it is interesting
that they display an approximately quadratic diffusion rate even for
times on the order of 10〈τ�〉. This is attributed to continued move-
ment of the mean particle location to transverse locations of higher
transverse velocity fluctuations (Fig. 1c).

Compared to the smallest particle cases, the higher Stokes num-
ber particle clouds are initially hindered by their inertia in diffus-
ing in the spanwise direction, but later diffuse at higher rates (su-
perquadratic for Stδ = 1). This is attributed to the fact that the largest
particles remain much closer to the wall than in the Stδ = 10−3 and
10−4 cases. This near-wall proximity and high inertia initially pre-
vents a large amount of diffusion away from the wall until the inte-
gration time becomes sufficiently large, at which point movement

away from the wall takes the particles to regions of rapidly increas-
ing spanwise fluid velocity fluctuations.

With respect to the transverse diffusion of Fig. 6c, note that a
small portion of the increase in (y+ − y+

0 ) is associated with the ter-
minal velocity rise (= tVterm). This portion is shown with the circle
symbols and corresponds to quadratic increases in (y+ − y+

0 )2. The
effect is most noticeable for the largest particles because their high
inertia results in a relatively small amount of transverse turbulent
diffusion. Whereas this terminal velocity influence does exist for
all particles, its effect is negligible in the smallest inertia condition
where the particles are dominated by asymmetric (away from the
wall) turbulent diffusion. Again, we note that the 10−3 and 10−4

Stδ cases are nearly identical because they behave approximately
as fluid tracers (because their St+ is less than unity). Additionally,
it is observed that the asymmetric turbulence yields diffusion rates
that are superquadratic (whereas comparable homogeneous diffu-
sion rates were subquadratic after similar integration times). This is
attributed to particle movement into regions of higher transverse ve-
locity fluctuations, which do not peak until y+ of about 70 (Fig. 1c).
Thus, the nonlinear diffusion rates are a consequence of the near-
wall injection test conditions.

C. Particle–Wall Collisions
Figure 7a shows the nondimensional spatial frequency of wall-

collisions ( fbounce) for several Stokes numbers vs x∗ locations. The
wall collision spatial frequency is defined as the average number of
particle bounces per unit distance and was obtained by normalizing
the total number of bounces in a particular streamwise bin by the
length of that bin and the total number of particles N . For all of
the particles considered, the number of collisions initially increases
with x∗ until a peak is reached that is dependent on St+. Beyond
this peak location, the number of collisions decreases as a result of
the particle cloud becoming more diffused. As discussed earlier, the
10−4 case behaves nearly as a fluid tracer, that is, it moves like a
Lagrangian fluid particle, and is, thus, included as a reference. For
these particles, the reflection condition imposed at y+ = 1 and the
nonequilibrium initial condition yields a finite number of bounces
at the initial locations, but this tends to be insignificant downstream.
Very little difference is noted between the Stδ = 10−4 case and the
Stδ = 10−3 (not shown) and Stδ = 10−2 cases (St+ = 2.7), indicat-
ing the same spatial frequency due to the reflection condition. A
dramatic increase in bouncing is noted for the largest two particles
(Stδ = 10−1 and 100) because their response time is too large to react
effectively to the retardation of the fluid velocity as the wall is ap-
proached: They tend to crash through the slower moving fluid. The
Stδ = 10−1 particle initially has many more bounces than the larger
100 particle and is attributed to the latter’s extremely large inertia.
By the last collection bin, the two particles conditions are seen to
behave almost identically (a result that is discussed further in the
following text). Figure 7b shows the spatial bouncing frequency at
the furthest downstream location (x∗ = 15) where an approximate
equilibrium is approached.

The nondimensional deposition rate V +
dep for the present results

was estimated by basing the total time over which the wall collisions
occurred on the average particle streamwise velocity, the length of
the bounce bin considered (corresponding to 7δ for the last bin),
and the time necessary to inject the total number of particles. As
shown in Fig. 7c, despite the differences between the present con-
ditions (a boundary layer with constant γ and with near-wall injec-
tions coupled with elastic reflections) and those of previous studies
(pipe and channel flow configurations with variable γ and with ini-
tially uniform particle distribution coupled with nonreflecting con-
ditions), the results are similar for St+ > 1. This confirms that the
bouncing frequencies in the present flow conditions are primarily
controlled by St+ (and not γ ). Note that the present deposition ve-
locity tended to plateau at St+ < 1 due to the reflection condition at
y+ = 1, which is different than in previous studies with nonreflecting
conditions.

Figures 8a and 8b show the horizontal and vertical wall impact
velocities normalized by uτ for wall collisions occurring between
7 and 15 boundary-layer thicknesses downstream of injection. This
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a)

b)

c)

Fig. 7 Nondimensional spatial boucing frequency as a function of
a) streamwise distance, b) Stδ , and c) St+ in terms of equivalent de-
positional velocity; results in parts b and c averaged over surface given
by 7 <– x∗ <– 15.

particular streamwise range was chosen to minimize the effect of the
particle’s injection condition on statistics. Similar to the results of
Uijttewaal and Oliemans,25 the magnitude of the particle’s horizon-
tal and vertical impact velocities were found generally to scale more
with uτ than Vterm because the present terminal velocity acts away
from the wall, and the wall collisions are caused by the fluid tur-
bulence. The streamwise velocity on particle impact (Fig. 8a) is on
the order of a few uτ , which is consistent with the local continuous-
phase fluid velocities. For example, the largest inertia particles tend
to be concentrated at a y+ of approximately 3–6 (as noted in Fig. 5)
and to have impact streamwise velocities consistent with the con-
tinuous fluid velocities from that region, that is, ubounce ∼ 4–5uτ ,
because they cannot appreciably slow down before impacting the
wall. The Uijttewaal and Oliemans25 study reported much higher
streamwise impact velocities, which is attributed to their particles
being injected far above the inner layer and, thus, having emanated
from higher-speed regions before being swept to toward the wall.
The decrease in this velocity for the smaller inertias (St+ < 10) is a
result of their quicker response times, such that the particles’ stream-
wise velocities are reduced as they move toward the wall and into
lower-speed fluid. For these particles, the reflection at y+ = 1 re-
sults in a u+

bounce of about 2uτ , whereas the smallest particle reported

a)

b)

c)

Fig. 8 Bounce impact velocity statistics: a) horizontal component,
b) vertical component, and c) ratio of components.

by Uijttewaal and Oliemans25 did not interact with the wall until
y+ = 0.15 and, thus, can be slowed even further.

The magnitude of the vertical impact velocity is shown in Fig. 8b.
The smallest two cases (Stδ = 10−4 and 10−3) have significantly re-
duced vertical impact velocities because they are able to effectively
respond to the fluid and reduce their approach speed as v f reduces
to satisfy the boundary conditions imposed by the wall. The highest
vertical impact velocity (about −0.22uτ ) is given by the St+ = 27
particles, which is approximately consistent with the v′

f rms near the
transverse injection location. This indicates that the vertical veloc-
ity fluctuations drive these particles to the wall and that their inertia
is sufficiently large that no appreciable deceleration is experienced
before reaching y+ = 1. As mentioned with respect to Fig. 6a, these
particles have an effective Stokes number (St�) of order unity, indi-
cating that they are large enough to experience substantial velocity
deviations from the largest near-wall eddies (with significant tur-
bophoresis) but are not too large to be unresponsive to the vertical
velocity fluctuations toward the wall. These results are similar to
those of Uijttewaal and Oliemans,25 except for the highest St+ case,
where, again, the present near-wall injection condition yields a re-
duced impact velocity in comparison.

Finally, consider the approach angle of the particles to character-
ize the near-wall trajectories. This angle can be related to the ratio
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of vertical to horizontal bounce velocity, as shown in Fig. 8c. The
results show that the particles approach the wall at a shallow an-
gle and that this angle increases with x∗ for the two large inertia
cases (to about 2 deg), consistent with the results of Uijttewaal and
Oliemans.25 The smaller inertia particles (which have St� � 1) yield
an approximately constant impact angle of about 0.5 deg, which is
attributed to the finite ubounce of Fig. 8a stemming from the y+ = 1
reflection.

D. Statistics Along the Particle Trajectory
The Lagrangian-averaged transverse particle velocities from the

DNS results are compared to a model that neglects effects of tur-
bulent diffusion in Fig. 9a. The zero-turbulence model is found by
integrating the particle equation of motion in the mean velocity field
such that the particle vertical velocity is the sum of only gravita-
tional effects and the mean vertical velocity, that is, Vterm + 〈v f 〉.
The DNS results show that at low particle inertias, the transverse
velocity includes a substantial upward drift that is manyfold of the
terminal velocity, indicating that turbulent diffusion mechanisms
predominately drive the particles away from the wall. This effect
is reduced at high inertias, for example, the largest particle case
(Stδ = 1) yields a 〈vp〉/Vterm of about two, and one would expect
that a further increase in Stδ would yield the asymptotic value of
Vterm for 〈vp〉. From the model prediction, note that neglecting tur-
bulent diffusion is wholly ineffective at predicting the mean trans-
verse particle movement, except for the highest Stokes number case,
and that the influence of v f is secondary at most. The importance
of diffusion in the Lagrangian mean particle velocity is reinforced
when comparing these data to those of the zero-turbulence model
predictions. A second model by Dorgan18 was also explored that
accounts for the influence of turbulence by adding the effect of ho-
mogeneous turbulent diffusion (based on the model of Hinze22) and
the nonhomogeneous turbophoresis velocity (based on a model by
Young and Leeming4). It was found that the model was only able
to reproduce the DNS trends in a qualitative sense, and the differ-

a)

b)

Fig. 9 Lagrangian-averaged vertical velocities: a) particle velocity for
DNS and zero-turbulence simulations normalized by Vterm and b) par-
ticle velocity and fluid velocity deviation from mean Eulerian value nor-
malized by 〈〈v′

f ,rms〉〉.

ences were attributed to inhibited downward diffusion (because the
wall limits the maximum downward travel and also creates upward
bouncing velocities).

Because the aforementioned upward drift is attributed to fluid
turbulence, it is interesting to evaluate the mean Lagrangian fluid
velocity 〈v f 〉 that the particle “sees” because it is expected to deviate
significantly from the small Eulerian fluid velocity v f . The fluid
velocity along the particle path can be decomposed into a mean
and a drift component, that is, 〈v f 〉 = 〈v′

f + v f 〉 = 〈v′
f 〉 + 〈v f 〉. The

perturbation at any point in time for a particle is, thus,

v′
f (x p, yp, z p, tp) = v f (x p, yp, z ptp) − v f (x p, yp) (9)

from which the mean fluid velocity drift 〈v′
f 〉 can be obtained by

averaging over all trajectories and over all particles. Although an
Eulerian (or moving Eulerian) average of the perturbation will be
zero based on its definition, that is, v′

f ≡ 0, it can be finite in a
Lagrangian particle-path frame. In particular, if particles are carried
away from the wall by turbulent diffusion, this must be accompanied
by a mean vertical component drift, that is, 〈v′

f 〉 > 0. This is consis-
tent with the results shown in Fig. 9b, which are normalized by the
Eulerian transverse turbulence intensity averaged along the particle
path, 〈v′

f,rms〉 = 〈v′
f,rms(x p, yp)〉. The smallest particles (Stδ = 10−4)

have drifts approaching 40% of the transverse turbulence intensity
observed along their path. This is caused by the asymmetric diffu-
sion due to the near-wall injection, whereby downward diffusion is
limited, whereas upward diffusion is unlimited. (The wall boundary
condition combined with the chosen injection location does not al-
low much downward travel.) For the highest inertia case (Stδ = 1),
the influence of diffusion is weaker because the particle trajecto-
ries are unresponsive to much of the turbulence (especially in the
near-wall region). Therefore, these particles are likely to behave as
if moving in an Eulerian reference frame, where the 〈v′

f 〉 should
approach zero as Stokes number increases, which is the trend that
is seen. Some qualitatively similar results have been reported by
Narayanan et al.10 but differ substantially due to different injection
conditions.

Figure 9b also shows the vertical particle velocity, where it noted
that there is a high degree of correlation between 〈vp〉 and 〈v′

f 〉 for
all cases. Thus, the mean transverse movement of the particle cloud
is primarily controlled by turbulent diffusion for the low and inter-
mediate Stokes number cases, and this explains the large values of
〈vp〉/Vterm shown in Fig. 9a. Note that relative velocity effects be-
come more important as the particle inertias become large (St+ � 1),
but do not seem to be simply quantified by a terminal velocity. The
relative velocity statistics are explored more in the next section.

E. Relative Particle Velocity Statistics
In the following text, the fluctuations of the particle relative veloc-

ity from the Lagrangian average is considered. These can be defined
for the transverse velocity as

〈vrel,rms〉 = {〈
v2

rel

〉 − 〈vrel〉2
} 1

2 (10)

Figure 10a shows rms of various components of the relative velocity
fluctuations about the Lagrangian mean, which are normalized by
their respective Eulerian fluid turbulence levels. If the particles’
relative velocity were not significantly affected by the turbulence,
that is, if the particles approximately moved at Vterm with respect
to the fluid at all times (which is the asymptote as Stokes number
approaches zero), then the rms components of the relative velocity
would approach zero. For both relative velocity components, the
Lagrangian rms values diminish as Stokes number decreases, which
is consistent with this limit.

However, as the particles’ inertia increases, the rms values of
the relative velocity fluctuations are much larger than Vterm, and the
values eventually becomes on the order of the local turbulence in-
tensity. This is because the larger particles (which can be called
inertia-dominated particles because St+ � 1 and γ � 1) tend to act
as moving-Eulerian elements, which will experience relative veloc-
ity fluctuations on the order of the fluctuations in the fluid velocity.15
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Fig. 10a Relative fluid velocity fluctuations.

Fig. 10b Reynolds number obtained from DNS statistics compared
with a theoretical model.

This phenomenon can be described by considering a particle sub-
jected to a simple sinusoidal fluctuation, for example, given by
v f (t) = α sin(2π t/τ f ), where α is the amplitude of the fluid ve-
locity fluctuations and τ f is the time period of the oscillations. By
integration of the particle equation of motion (3), and under the
assumption of independence of the initial conditions, the time evo-
lution of the particle’s relative velocity is given by

Vrel(t) = − 2π(St)α

1 + 4π 2(St)2
cos

(
2π t

τ f

)

+
(

α

1 + 4π 2(St)2
− α

)
sin

(
2π t

τ f

)
+ Vterm (11)

where St = τp/τ f , which is a Stokes number for the sinusoidal fluc-
tuation. Averaging over a time corresponding to an integer of the
sinusoidal period gives the mean Vterm for this simple flow. However,
the rms of the relative velocity fluctuations about the mean is

vrel,rms

v′
f,term

=
(({

St� cos−1(1/e)

1 + St2
�[cos−1(1/e)]2

}2

+
{

1

1 + St2
�[cos−1(1/e)]2

− 1

}2)) 1
2

(12)

where St� = 2πSt/[cos−1(1/e)] by assuming an exponential decay
for the decorrelation timescale and where α/

√
2 = v′

f rms has been
used to characterize the strength of the fluctuations. Similarly, we
can examine the velocities perpendicular to the terminal velocity and
find that the mean will be zero, but the ratio of the rms velocities will
be the same function of the integral Stokes number as in Eq. (12),
that is, (urel,rms/u′

f rms) = (vrel,rms/v
′
f rms). This simple theory is shown

in Fig. 10a with comparison to the Lagrangian DNS data of both

transverse and streamwise fluctuations, and the agreement is quite
reasonable. For the limit of St� � 1 and v′

f,rms and u′
f,rms � Vterm,

which corresponds to inertia-dominated particles, the simple model
gives vrel,rms = v′

f,rms and urel,rms = u′
f,rms, which is consistent with the

trend for the DNS data. As such, particles with large response times
and small drift parameters can be expected to experience relative
velocity fluctuations that are on the order of the fluctuations in the
turbulence (and much larger than the particle’s terminal velocity).
This is significant in that the magnitude of the instantaneous relative
velocity at these high inertias (and small γ ) will be dominated by
the surrounding fluid turbulence and not the gravitational forces.

Figure 10b gives the average particle Reynolds number based
on the Lagrangian-averaged relative velocity magnitude 〈|Vrel|〉 and
the terminal particle Reynolds number based on Vterm. These two
Reynolds numbers are defined as

〈Rep〉 = 〈|Vrel|〉d/ν f , Repterm = Vtermd/v f (13)

The typical Rep values are generally less than unity and demonstrate
that the use of a linear drag law for these particles is reasonable. In
general, an increase in Stokes number is associated with a linear
increase in Rep,term on the log–log scale, with a slope of one-half,
because the fluid viscosity was held constant and the particle diam-
eter varies with

√
τp . However, as the Stokes number increases, the

path-averaged Rep based on the DNS results are much larger than
those based on Vterm. To explain this, the theoretical model curve
shown in Fig. 10b was computed by assuming that

V 2
rel = V 2

term + V ′2
rel,rms (14)

where V 2
rel,rms = u2

rel,rms + v2
rel,rms and where the rms components were

based on Eq. (12). As seen in Fig. 10b, the theoretical model reason-
ably represents the DNS data and indicates that inertia-dominated
particles can be subjected to mean Rep values that far exceed
Rep,term.

In summary, strong relative velocities fluctuations were found
in the Lagrangian mean that approached the local turbulent fluc-
tuations in the fluid (and far exceeded Vterm) for inertia-dominated
particles (St+ � 1 and γ � 1). These trends were predicted by a
simple model, indicating that Rep,term alone is a poor guide for de-
termining the particle Rep for the present test conditions and that
turbulent fluctuations effects should be included for high Stokes
numbers.

IV. Conclusions
Simulations have been conducted for a range of particle inertias

for a fixed and finite terminal velocity in a DNS resolved turbulent
boundary layer. Preferential concentration was noted for all iner-
tia values near the initial release point; however, far downstream,
the phenomenon was strongest for St+ ≈ 3 whereas it weakened for
lower Stokes numbers or was restricted to long streaks for larger
Stokes numbers. The reflection condition also yielded more diffuse
streaks than seen in previous DNS channel flow studies. Little dif-
ference was seen in the particle concentration profiles for St+ < 1,
indicating that these particles behave as fluid scalars. Particles with
larger inertia yielded a decreased diffusion from the wall because the
particles were more likely to be trapped by boundary-layer sweeps
than removed by boundary-layer ejections.

Because of the near-wall injection, particle–wall collisions were
seen to increase with downstream position and St+ until the particle
cloud becomes sufficiently diffused, at which point the frequency
tended to become approximately constant, whereupon the resulting
collision rates were similar to channel flow deposition for uniform
injection. The particle impacts were characterized by low approach
angles (2 deg or less) and streamwise impact velocities on the order
of the friction velocity. This was qualitatively similar to previous
channel-flow deposition studies, but differences due to near-wall
injection were noted for the largest particles and differences due to
wall reflections were noted for the smallest particles.

The mean transverse movement of the particle cloud transitioned
from that controlled by fluid-tracer asymmetric diffusion for the
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smallest particles (St+ < 1) to a gravitationally controlled vertical
movement for the largest particles (St+ � 1). However, the relative
velocity was not well represented by a simple steady terminal veloc-
ity. In particular, the fluctuations of the mean Lagrangian relative ve-
locity were also found to be small for the lowest-inertia particles but
approached the local turbulent fluctuations in the fluid (and far ex-
ceeded Vterm) for inertia-dominated particles (St+ � 1 and γ � 1),
as demonstrated by a simple model. Consequently, these inertia-
dominated particles were subjected to mean Rep that far exceeded
Rep,term.
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